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A DIFFERENCE OF SUMS OF FINITE PRODUCTS OF LUCAS-BALANCING
POLYNOMIALS

TAEKYUN KIM!, CHEON SEOUNG RYOO?, DAE SAN KIM?, AND JONGKYUM KWON*

ABSTRACT. The Lucas-balancing numbers arise naturally from the balancing numbers which were
introduced by Behera and Panda about twenty years ago and have been undergone intensive studies
by many researchers. Natural extensions of the Lucas-balancing numbers are the Lucas-balancing
polynomials. In this paper, we will consider a difference of sums of finite products of Lucas-
balancing polynomials and represent them in terms of nine orthogonal polynomials in two different
ways cach. In particular, this gives us an expression of such a difference of sums of finite products
in terms of Lucas-balancing polynomials. Our proof is based on the recent observation by Frontczak
as to a fundamental relation between Chebyshev polynomials of the first kind and Lucas-balancing
polynomials.

1. INTRODUCTION

In this paper, we consider the following difference of sums of finite products of Lucas-balancing
polynomials C,(x) given by

Y ¥ ("Tevewsa.w

1=0iy++ip1=n—1 \ T

n—2 rl

M -y X ( >(3x)lC,-l(x)~--C,-,_+|(x), (n>2,r>1),
1=0 i+ tirg=n—i—2 \ T

and represent them in terms of nine orthogonal polynomials in two different ways each. In particu-

lar, this gives a representation of (1) in term of Lucas-balancing polynomials.

The Lucas-balancing numbers C, arise naturally from the balancing numbers B,, which were in-
troduced by Behera and Panda [3] about twenty years ago. Since their introduction, the balancing
numbers have been undergone intensive studies and lots of interesting results about them have been
uncovered [4, 7, 11-15]. Natural extensions of balancing numbers and those of Lucas-balancing
numbers are respectively the balancing polynomials B,(x) and the Lucas-balancing polynomials
C,(x). Then B, (x) = B,(1), C, =C,(1), (n > 0).

Our representations of the difference in (1) are based on the fundamental relations between Cheby-
shev polynomials of the first kind and Lucas-balancing polynomials which was recently discovered
by Frontczak in [5]. Similar relations exist between Chebyshev polynomials of the second kind
and balancing polynomials. It is very strange that these relations were observed only very re-
cently. From these fundamental observations together with some well-known properties of Cheby-
shev polynomials of the first kind, we can obtain not only the above-mentioned representations but
also some immediate results for Lucas-balancing polynomials and hence also for Luca-balancing
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numbers.

The classical linearization problem in general consists in determining the coefficients in the ex-
pansion of the product of two polynomials in terms of an arbitrary polynomial sequence. Thus our
representation of the difference in (1) may be viewed as a generalization of this classical problem.
In recent years, many mathematicians have drawn their attention on the problem of representing
sums of finite products of some special polynomials in terms of other special polynomials [8,9 and
the references therein].

We will spend the rest of this section in recalling some preliminary facts and results on the Lucas-
balancing numbers and polynomials and on the balancing numbers, and Chebyshev polynomials
of first kind. We recommend the Ph. D. thesis of Ray [14] and the survey paper [11], for more
details on the balancing and Lucas-balancing polynomials and numbers. As to a general reference
for Chebyshev polynomials, we let the reader refer to [10].

The Lucas-balancing polynomials C, (x) are given either by the generating function

— 3xt
2 n 7
2 l—6xt—|-t2 ZC

n=0

or by the recurrence relation :
3) Cur1(x) = 6xCy(x) = Co1 (%), (n21), Co(x) =1, Ci(x) =
The first few terms of Lucas-balancing polynomials are given as follows :
Cy(x) =18x — 1, C3(x) =108x°> —9x, Cy(x) = 648x* — 722> + 1,

Cy(x) = 3888x° — 540x° + 15x, - - -

The C, = Cy(1), (n > 0), are called the Lucas-balancing numbers. On the other hand, the balancing
numbers B, are given either by the generating function

4 B,t",

@ 1— 6t 1—6t+12 n;

or by the recurrence relation

(5) Bn+1:6Bn_Bn—la (nZI),Bo=1,31=6-

‘We remark here that By is defined as 1, not as 0, following the original definition in [3].

The balancing numbers B,, are originally defined as follows : A positive integer n is called a bal-
ancing number if

142+ +n-1)=m+1)+n+2)+ -+ (n+r)

holds for some positive integer r, in which case r is the balancer corresponding to the balancing
number n. From this fact, it is easy to see that a positive integer # is a balancing number if and only
if 872 + 1 is a perfect square. Then, ¢, = \/8B2+ 1, (n > 0), are the Lucas-balancing numbers.

Next, we recall a few facts on the Chebyshev polynomials of the first kind and state the corre-
sponding ones for the Lucas-balancing polynomials that follow from aforementioned discovery of
Frontczak.
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The Chebyshev polynomials of the first kind 7,,(x) are given either by the generating function

1 —xt -
6 —— =) T,(x)t"
© [—2x+12 = n(a)f",
or by the recurrence relation
(7 Thr1(x) =2xT,(x) = T—1(x), (n>1), To(x)=1, Ti(x)=x.

In addition, they are explicitly given by

5]
I 1- 2 1 —1
(8) Tu(x) :2F1(—n, nis Tx) = gZ(_l)lm<”l )(2;;):1—21’ (n>1),

1=0
where ,F (a, b;c;x) is the Gaussinan hypergeometric function, (see (24)).
The next fundamental result, first observed in [5], follows either (2) and (6), or (3) and (7).
Lemma 1.1. ([5]) For any integer n > 0, we have
) Cu(x) = T(3x).
As is knwon, 7, (x) satisfies the orthogonality relation

1 1
(10) / (l _x2)_§7;1(x)7;n(x)dx = 815/1./11'
-1

n

From (10) and (9), we can derive the following orthogonality relation of C,,(x) :

1
T

(1 /§ (1= 982) "2 C (X)Con (X)X = =8 -
_% 3g,
Moreover, from the Rodrigues’ formula for 7,,(x) given by
(—=1)"2"n! 21 d" 1
12 Tp(x) = ——~——(1—x?)2 1—x%)" 2
(12 ()= g (1= -y
we obtain

(13) Cu(x) =
Now, we get the following proposition from (11) and (13).

n
Proposition 1.2. Let g(x) € R[x] be a polynomial of degree n, and let g(x) = Z BkCr(x). Then we
k=0

have the following:

3e(—3)kk! 5 dk i
(13 o= 22UE P g 1 -9y -tax
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2. PRELIMINARIES AND STATEMENTS OF RESULTS

In this section, we will recall some elementary facts on orthogonal polynomials and state our
main results in this paper. More details on orthogonal polynomials can be found either in the books
[1,2,10] or in the papers [8,9].

The falling factorial sequence (x), and the rising factorial sequence (x), are respectively given

by
(15) X)) = x(x—1)---(x—n+1), (n>1), (x)o=1,
(16) <x>n = x(x+1)"'(x+n_1)7 (nZ 1),(X>0= 1.

The two factorials are related by

(I7) (=D)"®)n=(—X)n, (—=1)"x)n=(—X)n-
2n—2s)! 22 (-1)5(L),
a® ((nfs)!) - (%(—n))s<2>  (r2520)
Cx+1) Cx+n)
(19) m = (X)n, Tx) =(X)n, (n>0),
(20) F(n—t—%) = %, (n>0),
Q1) B(x,y) = /Olt"*'(l —t) dr = %, (Re(x) >0, Re(y) > 0),

where I'(x) and B(x,y) are the gamma and beta functions, respectively.
The hypergeometric function is defined by

- X
22)  pFar,..ap; by by i) = Y > (dp)n

(a
Bowgyant’ P AL x| < 1).
n=0 n q/n Tt-

(23)  In particular, the Gaussian hypergeometric function is given by

. . _ - <a>l‘l<b>l‘l-ﬁ
24) fifabsesx) =Y == (W <1).

Next, we will recall Chebyshev polynomials of the second kind U,(x), those of the third kind
Vi (x), those of the fourth kind W,,(x), Hermite polynomials H,(x), generalized Laguerre polynomi-

als L% (x), Legendre polynomials P,(x), Gegenbauer polynomials cV (x), and Jacobi polynomials
(a.B)
P, (x).
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They are explicitly given by

31— —1
(25) Uy(x) = (n+1)2F1(—n, n+2; 5 2") _ Z(_l)l(”l )(2)():1—217 (n>0),
26)  Va(x) = 2R [ —non+1; 2128 —i 20 =1 ot 11 (n > 0)
n = 2" 2’2 - : / ) —Y)s
27) W,(x) = (2n—|—1)2Fl(—n n+1; % l—x)

n on— 1 n—1 o

(5] l
o = (_1) n—21
(28)  Hu(x) = n!;m(b) ; (n>0),
1), o (=)'
(29  L¥(x) = <‘”' ) 1Fi(—n; OH—l;x):Z—( )“(” ) L (n>0),

n. )

1—x 12 2m—21
30) Pn(x):2F1<—n n+1,;1; T):z_z <><nn )x’7—217 (n>0),

6y M) = ("*23‘1)25(_”,,1%;“_- 1)

27 2
—k+A
:Z(l R I 0)
32) PP(x) = "zFl(—n I+a+B+n:a+l; 2")

EEEEE) e

where A > fé and A # 0.

In Theorem 1 of [8] and Theorem 1.1 of [9], the difference of sums of finite products of Chebyshev
polynomials of the first kind

y ¥ (7)nwen.

1=0ij+ iy 1=n—1

n—2 r
Y (e e, w22z,

1=0i1+A+ipy1=n—1-2

were expressed in terms of orthogonal polynomials in (8) and (25)-(32).

The next theorem is obtained from those expressions by replacing x by 3x and making use of (9).
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Theorem 2.1. Let n,r be integers withn > 2, r > 1. Then we have the following representations.

n

Y or (Tevewa.w

1=0ij4-+i,+1=n—1

B> (") et 6

1=0i1++is1=n—1-2

33) = <"fr) en_z,-(’;>zﬂ(—j,j—n;l—n—r;l)cn_zj(x)

j=0

(3]
1 2 1

34 = Hl("f)ﬂ)("j )(n—2j+1)zﬂ(—j, jon—1:i1—n—r;1)U,_2;(3x)
Gs) = ("fr> y ([’}] 2F1<—[§], [%}—n;l—n—rﬂ)Vn—j(k)

j=0 \l2
G6) = ("f’) i(*l)j<[z]>2F1<* B] H fn;lfnfr;l)Wn_j(3x)

2

! 1 .
(37) = - — j 'IFI(*J§ lfnfr; 71)Hn_2j(3x)

N R

 (n4r)2t ¢ (—1) 2 (=) (n+r—1-D)Thn+a+1-21) ,

G® = j;)r(a+j+1) Pt IN(n—j—2I)! Ly (3
n+r 2 2n—4j+1) . 1
39 = , : 2Fi(—j, j—n—5 i 1=n—r; 1)P,_2;(3x)
SR IO S 2 !

Tt g (na-2)) . . e

(40) = " jzoj'r(n+k+1—j)2Fl(_j’ j=n—=2A;1—n—r; 1)C,":(3x)
oy L (—2ViD( ("] _ly
@y = (=2) (n+r)~z( DT(+otp+1) y (-3) .
r! = TQji+ta+p+1)  Fln+r—1)(n—j-2)!
(

<2Fi(j+20—n, j+B+1:2j+a+p+2:2)P"P) (3x).

The next theorem will be shown in the following section. We note here that the polynomials on
the right hand sides are in x, not in 3x.

Theorem 2.2. Let n,r be integers withn > 2, r > 1. Then we have the following representations
! r—+1
Yoy (7)evaw e

1=0i+-Aippi=n—1 \ T

S (") v w

1=0i14+ips1=n—1-2
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(5]
n+r n L 1
42 = ( )Ze‘n 2](,)2F1(—],J—n;l—n—r;—)Tn_zj(x)
Jj=0 J 9
+
r

3n +1 1
@3 = (" g (”. )n 2j+lhﬂ<—J7j—"—1§l—n—rzg)apy@)

44 =3 ”jr>]§ [g])m([ﬂ, [%]fn;l—nfré)Vn—j(X)
)

_ o (ntr) i(n U A T | ‘
o o) Er(n (- [
_ 3(n+r)! (3] 1 . 1 _
T joﬂw—zﬂ“ﬂ(_”’1_”_”_5>H””“)
6" (ntr) ¢ (—=1)/ (2 j] )(n+r—1—l)'F(n+a+l—21) o
@n == Zr(a+1+1 * Z Nn—j—20)! Li()
3+ g (2n— 4j+ ) o 1 1 '
“48) = 0 ,ZE)J (n—H— . 2F1<—J7J—n—§, l—n—r; §)Pn—2j(x)
3T+ (A —2)) . . "
@ = rl jz(’)j!F(n+7L+1—j)2Fl<_]’J_n_/l’ b= 9>C" 24(%)
50 - (76)"(n+r)!i(72)jl“(j+(x+ﬁ+1)[%j] (—%)
N r! 5 TQj+a+p+1) S lln+r—1)(n—j-20)

xR (j+2—n, j+B+1:2j+a+B+2:2)P P (x).

3. PROOF OF THEOREM 2.2

Here we are going to show Theorem 2.2. The next two propositions are respectively from Propo-
sition 1 in [8] and Proposition 2.1 in [9].

Proposition 3.1. Let g(x) € R[x] be a polynomial of degree n. Then we have the following.

(a) q(x) =Y Ci1Ti(x)
k=0
where . ;
(—1)'2 k!&‘k/l d PN
= —(1— 2dx.

Cet = ), 40 gl =) 2
(b) q(x) = Y CeaUi(x),
where k .

(=D (ke +1 / 2K+

Co=—7 7T 2k+1 = 4( (1=x7)""2dx.

© q(x) =Y CesVi(),
k=0
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where
(= DRIk 1 d* el kil
Ck_a—WLICI( )dxk(l— x)E2 (1 4x)k 2dx.
(d) q(x) = Y CraWi(x),
k=0
where

(—1)kk12k

k 4l |
Ck.4:W/—lq( )jk(l_ ) 7(1+x)k_7dx.

Proposition 3.2. Let g(x) € R[x] be a polynomial of degree n. Then the following hold true.

(@) q(x) =Y CesHi(x),

k=0
where

(=DF a .
Crs= yva ) (x)ﬂe dx

(b) q(x) =Y CeoL{ (%)

k=0
where

X k+a
Cro = F(OH—k—H)/ q(x) T k(e ) dx.
(©) q(x) =Y CerP(x),
where
2k+1 ! dF
G = pIEayal /71 Q(x)ﬁ(xz —1dx.

) () =Y CesCM (),

k=0
where

(k+2A)T'(A) ! d* ka—1
= — (1 =)A=y,
Cis (C2f AT+ A+ 1) /_IQ(X)dxk( ) x

(e) q(x) = ZCkyPk(a'ﬂ)

k=0
where

_ =Dkt ot+ B+ DI(k+a+B+1) d* ke kP
€9 = e BT (g +k+ (B +k+1) /, 90 g (1 =05 (1 40P

We also need the next two results from Proposition 2 in [8] and Proposition 2.2 in [9].
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Proposition 3.3. Let m,k be nonnegative integers. Then we have the following.

1 L2V dong 0, ifm=1 (mod 2),
a —x7)"2xdx = 1(2k)! .
@ /fl( ) %, ifm=0 (mod 2).
: 0, ifm=1 (mod?2),
b / l —x2 k+%xmdx: m!(2k+2)! .
® *1( ) 2’"*2’<+2(é+(—k++1))!({;)!(k+l)!’ if m=0 (mod 2).
(m+1)!(2k)!x .
! m+2k+1 ( mEl m+1 5 l‘fm =1 (mOd 2),
© [ 0t ) TR ! (moa?
) FE g e fm=0(mod2).
(m+1)!(2k)'7 . _
1 1 1 T omA kI (mEL g =BT lf”n: 1 (mod 2),
(d) / 1—x)*2 (14 x)* 2x"dx = (T2 !
_1( ) ( ) m!ék)!n lme 0 (mod 2)

22K (B 4k) () k!

Proposition 3.4. Let m,k be nonnegative integers. Then we have the following.

@ /oq g 0, ifm=1 (mod 2),
a e e (ﬂ—\/f ifm=0 (mod 2).

1 - 0, ifm=1 (mod 2),
(b) / K1 =x7)dx=q 2 pmi(k+2+1)! . —0 42
-1 ey fm=0(mod2).
1 . 0, ifm=1 (mod 2),
(©) / (=) de =4 ppgasreedy
A=) i, ifm=0 (mod2)
1
(d) / xm(l _x)k+0t(1 +x)k+de
-1
:22k+a+ﬁ+l i m (71)rn—52sr(k+a+l)r(k+ﬁ —|—S—|—1)
S \s F2k+oa+p+s+2)

The following lemma is needed in showing all the identities in (42)-(50).

Lemma 3.5. Let n,r be integers with n > 2, r > 1. Then the following identity holds.

y ¥ (”:l > (39)/Cy (x) -G, (x)

=001+ +irr1=n—1

n=2 r+! 1 r
(51) -y X ( )<3x>’c,-1 () Cira ) = 5y Crtr ).
l r . r.

=0i1++ipp1=n—1-2
Proof. Let

1 —3xt
1 —6xt+12

=Y G,

n=0

(52) F(t,x) =
By taking the r-th derivative with respect to x on both sides of (52), we obtain

(53) 3 =) ri(60) (1 =6t +12) "D = Y & (e, (r>1).
n=0
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Then, from (53), we get

L v
— ) ()"
3.6 mn;, nr
17 1-3x \"™!
(1 =3xt) N\ 1 — 6t 412

(1-7 2(”)(3)@2( L GG

=0 Nij+-Aipr1=1

- ( <r+ l> Y GG (x)>,n

n—0 i =n—1

_ i (722 (’“) (3x)! Y Gy (x)---Ci,., (x))t",

n=2 i1+ =n—1-2

from which the desired result follows. O
Remark : In Lemma 1 of [8], it was mentioned that

VD VN ( RE e

1=0iy+-+iyr1=n—I
n—2
r—+1 1
¢H -y X AT (0 T (0) = 55 T (), (122, 7> 1),
=0 iy 4o tipy=n—i—2 \ T 2r=1r!

We note here that (51) also follows from from (54) by replacing x by 3x and using (9).
For brevity and forn > 2, r > 1, we let

a =Y T ("T)evew-c.w

=0ij+-+ir1=n—1

n—2
(55) LT (e 6w,

=0 i+ tip=n—1—2 \ T

From (8) and (9), we obtain an explicit expression for C,(x) :

3] U Inei
(56) Calx) = g Y (=)' <” ; ) (6x)" .
=0

Thus the r-th derivative of (56) is given by

2! —1
Z (n l )6n—21(n _ 2[)rxn—21—r'

(57) i (x

I\JIS

In particular, we see that

(5]
(k) oy TN ] ntr—
58 G ()= X ( 1>n+,_l< l

l
5 )6r1+r—21(n L 21)’_+kxn—k—21'

Every expression in (42)-(50) can be derived from Propositions 3.1- 3.4, (51), (58), and the facts in
(15)-(21). Here we are going to show only (44) and (50), while the rest are left as exercises to the
interested reader.
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Let
(59 . ( Z Cre3Vi(x).
Then, from (c) in Proposition 3.1, (51), (58), and integration by parts k times, we have

1\ 10k 1 k | \
Cis = %[ (x)%(l—x)k77(1+x)k+7dx

-0kt ot gy d 1
e [ W -t

= 3(2k) lm6r 17!
K12k ) B 1
> 3(2k)\m6" lr'/ C”J::k (1—x)2(1+x)*2dx
B - "+r§ ntr=l g2
T 3(2k)!1m6 T n+r—l !

X (ntr— 21),+k/ P2 (1 0k,
-1

From (c) of Proposition 3.3, we note that
1
/ PR (1 x)
~1

(n—k—21+1)!(2k)! % it n %k (mod 2),

211+k—2[+](n+l\+1 l) (n k+1 /) %’

if n =k (mod 2).

(61) = (n—k—20){(2h)17
g+ (mgh )y (k)1
Then, from (59)-(61) and after some simplifications, we get
k
3" (n+r)! & D= 1=D (n—k =20+ 1)V(x)
62 Oy r(x) = ———
(62) . (X) o ngk‘,gn ; Nn+r—1)! 2(n+12<+1 _l)!(n—§+l Y
n#k (mod 2)
A
3 (n+r)! 'z —% Y(n+r—1-=10)! Vi (x)
t— Z Z 1 ntk g\ (nzk )y
ntr—18 (=055 =)

]
: 0<k<n =0
n=k (mod 2)
=2j+ 1, for the first sum and n — k = 2j, for the second, and after some

Letting in (62) n — k
simplifications, we have

l
3 (n+r)! (2] 1 L 1
©3)  ans(x) = —— ]Z J)_J!an(—J,J—n;l—n—r;§>anz,>1(x)
(3]
I (n+r)! & 1 oL )
+ o Z{)(nfj)‘]'z ]<_.]7]_n71_n_rs 9>Vn 2]()
_3"(n+r)! L | i l o l )
= L () e
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This completes the proof for (44).

Next, we let
(64) Or(x) = chgp‘xﬁ()

Then, from (e) of Proposition 3.2, (51), (58), and integration by parts k times, and proceeding just
as in (60), we obtain

k+a+B+DI(k+o+p+1)
3. 2k+a+l3+1r(a+k+ DO(B+k+1)6717!

2 —
65) n+r Z (n+lr l>6n+r—2l(n+r_21)r+k

Cio =

n+r—l

/ - k— 21 )k+a(1_,’_x)k+ﬁdx.

Here, from (d) of Proposition 3.4, we obsreve that

(66) /l x"fkle(l )k+0¢(1 + )k+Bd 22k+a+l3+1 n_kZ_ZI <I’l —k—2l) ( 1)n7k72l<s‘25
—X X X = —
! s=0 s
Ck+a+1)k+B+s+1)
TQk+o+B+s+2)

From (65) and (66), and after some simplifications, we have

(=6)"(n+r) (=2)*Qk+a+B+1)(k+o+B+1)

©7) G = o C(B+k+1)
["f] (—Ly k2 (=2)'T(k+B+s+1)

S lntr—1) & sln—k—21—s)T2k+a+p+s+2)’

where we note that the inner sum is equal to

i (=2)T(k+B+s+1)
(n—k—=21—s)TRk+a+p+s+2)
Ck+B+1)

68 - Fi(k+20—n, k 152k 2:2).
©8) Tk+a+B+2)(n—k—20)° 1kt 2=n kb prl: 2kt ot p+2:2)

s=0

Now, form (64), (67), and (68), we finally get

(=6)" (n+r)! & (2 (k+at+f+1) 2] (—L)
r! = TRk+a+B+1) Sl nt+r—1)(n—k-20)!

X oFy(k+20—n, k+B+1; 2k+a+B+2;2)P %P (x).

Ol r ()C) =

This shows the desired result in (50).
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4. CONCLUSIONS

Behera and Panda introduced balancing numbers about twenty years ago. Since then, these num-
bers have been intensively studied by many researchers and lots of interesting properties of them
have been unveiled. Natural extensions of the Lucas-balancing numbers are the Lucas-balancing
polynomials. In this paper, we consider a difference of sums of finite products of Lucas-balancing
polynomials and represent them in terms of nine orthogonal polynomials in two different ways
each. In particular, this gives us an expression of such a difference of sums of finite products in
terms of Lucas-balancing polynomials. Our proof is based on the recent observation by Frontczak
as to a fundamental relation between Chebyshev polynomials of the first kind and Lucas-balancing
polynomials.
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